3.148 \(\int \sec ^3(c+d x) (a+a \sec (c+d x))^{5/3} \, dx\)

Optimal. Leaf size=413 \[ -\frac{343\ 3^{3/4} a \tan (c+d x) \left (\sqrt [3]{2}-\sqrt [3]{\sec (c+d x)+1}\right ) \sqrt{\frac{(\sec (c+d x)+1)^{2/3}+\sqrt [3]{2} \sqrt [3]{\sec (c+d x)+1}+2^{2/3}}{\left (\sqrt [3]{2}-\left (1+\sqrt{3}\right ) \sqrt [3]{\sec (c+d x)+1}\right )^2}} (a \sec (c+d x)+a)^{2/3} \text{EllipticF}\left (\cos ^{-1}\left (\frac{\sqrt [3]{2}-\left (1-\sqrt{3}\right ) \sqrt [3]{\sec (c+d x)+1}}{\sqrt [3]{2}-\left (1+\sqrt{3}\right ) \sqrt [3]{\sec (c+d x)+1}}\right ),\frac{1}{4} \left (2+\sqrt{3}\right )\right )}{880 \sqrt [3]{2} d (1-\sec (c+d x)) (\sec (c+d x)+1) \sqrt{-\frac{\sqrt [3]{\sec (c+d x)+1} \left (\sqrt [3]{2}-\sqrt [3]{\sec (c+d x)+1}\right )}{\left (\sqrt [3]{2}-\left (1+\sqrt{3}\right ) \sqrt [3]{\sec (c+d x)+1}\right )^2}}}+\frac{3 \tan (c+d x) (a \sec (c+d x)+a)^{8/3}}{11 a d}-\frac{9 \tan (c+d x) (a \sec (c+d x)+a)^{5/3}}{88 d}+\frac{147 a \tan (c+d x) (a \sec (c+d x)+a)^{2/3}}{440 d}+\frac{1029 a \tan (c+d x) (a \sec (c+d x)+a)^{2/3}}{880 d (\sec (c+d x)+1)} \]

[Out]

(147*a*(a + a*Sec[c + d*x])^(2/3)*Tan[c + d*x])/(440*d) + (1029*a*(a + a*Sec[c + d*x])^(2/3)*Tan[c + d*x])/(88
0*d*(1 + Sec[c + d*x])) - (9*(a + a*Sec[c + d*x])^(5/3)*Tan[c + d*x])/(88*d) + (3*(a + a*Sec[c + d*x])^(8/3)*T
an[c + d*x])/(11*a*d) - (343*3^(3/4)*a*EllipticF[ArcCos[(2^(1/3) - (1 - Sqrt[3])*(1 + Sec[c + d*x])^(1/3))/(2^
(1/3) - (1 + Sqrt[3])*(1 + Sec[c + d*x])^(1/3))], (2 + Sqrt[3])/4]*(a + a*Sec[c + d*x])^(2/3)*(2^(1/3) - (1 +
Sec[c + d*x])^(1/3))*Sqrt[(2^(2/3) + 2^(1/3)*(1 + Sec[c + d*x])^(1/3) + (1 + Sec[c + d*x])^(2/3))/(2^(1/3) - (
1 + Sqrt[3])*(1 + Sec[c + d*x])^(1/3))^2]*Tan[c + d*x])/(880*2^(1/3)*d*(1 - Sec[c + d*x])*(1 + Sec[c + d*x])*S
qrt[-(((1 + Sec[c + d*x])^(1/3)*(2^(1/3) - (1 + Sec[c + d*x])^(1/3)))/(2^(1/3) - (1 + Sqrt[3])*(1 + Sec[c + d*
x])^(1/3))^2)])

________________________________________________________________________________________

Rubi [A]  time = 0.507738, antiderivative size = 413, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.304, Rules used = {3800, 4001, 3828, 3827, 50, 63, 225} \[ \frac{3 \tan (c+d x) (a \sec (c+d x)+a)^{8/3}}{11 a d}-\frac{9 \tan (c+d x) (a \sec (c+d x)+a)^{5/3}}{88 d}+\frac{147 a \tan (c+d x) (a \sec (c+d x)+a)^{2/3}}{440 d}+\frac{1029 a \tan (c+d x) (a \sec (c+d x)+a)^{2/3}}{880 d (\sec (c+d x)+1)}-\frac{343\ 3^{3/4} a \tan (c+d x) \left (\sqrt [3]{2}-\sqrt [3]{\sec (c+d x)+1}\right ) \sqrt{\frac{(\sec (c+d x)+1)^{2/3}+\sqrt [3]{2} \sqrt [3]{\sec (c+d x)+1}+2^{2/3}}{\left (\sqrt [3]{2}-\left (1+\sqrt{3}\right ) \sqrt [3]{\sec (c+d x)+1}\right )^2}} (a \sec (c+d x)+a)^{2/3} F\left (\cos ^{-1}\left (\frac{\sqrt [3]{2}-\left (1-\sqrt{3}\right ) \sqrt [3]{\sec (c+d x)+1}}{\sqrt [3]{2}-\left (1+\sqrt{3}\right ) \sqrt [3]{\sec (c+d x)+1}}\right )|\frac{1}{4} \left (2+\sqrt{3}\right )\right )}{880 \sqrt [3]{2} d (1-\sec (c+d x)) (\sec (c+d x)+1) \sqrt{-\frac{\sqrt [3]{\sec (c+d x)+1} \left (\sqrt [3]{2}-\sqrt [3]{\sec (c+d x)+1}\right )}{\left (\sqrt [3]{2}-\left (1+\sqrt{3}\right ) \sqrt [3]{\sec (c+d x)+1}\right )^2}}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^3*(a + a*Sec[c + d*x])^(5/3),x]

[Out]

(147*a*(a + a*Sec[c + d*x])^(2/3)*Tan[c + d*x])/(440*d) + (1029*a*(a + a*Sec[c + d*x])^(2/3)*Tan[c + d*x])/(88
0*d*(1 + Sec[c + d*x])) - (9*(a + a*Sec[c + d*x])^(5/3)*Tan[c + d*x])/(88*d) + (3*(a + a*Sec[c + d*x])^(8/3)*T
an[c + d*x])/(11*a*d) - (343*3^(3/4)*a*EllipticF[ArcCos[(2^(1/3) - (1 - Sqrt[3])*(1 + Sec[c + d*x])^(1/3))/(2^
(1/3) - (1 + Sqrt[3])*(1 + Sec[c + d*x])^(1/3))], (2 + Sqrt[3])/4]*(a + a*Sec[c + d*x])^(2/3)*(2^(1/3) - (1 +
Sec[c + d*x])^(1/3))*Sqrt[(2^(2/3) + 2^(1/3)*(1 + Sec[c + d*x])^(1/3) + (1 + Sec[c + d*x])^(2/3))/(2^(1/3) - (
1 + Sqrt[3])*(1 + Sec[c + d*x])^(1/3))^2]*Tan[c + d*x])/(880*2^(1/3)*d*(1 - Sec[c + d*x])*(1 + Sec[c + d*x])*S
qrt[-(((1 + Sec[c + d*x])^(1/3)*(2^(1/3) - (1 + Sec[c + d*x])^(1/3)))/(2^(1/3) - (1 + Sqrt[3])*(1 + Sec[c + d*
x])^(1/3))^2)])

Rule 3800

Int[csc[(e_.) + (f_.)*(x_)]^3*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(Cot[e + f*x]*(a
 + b*Csc[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*(m + 2)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*(b
*(m + 1) - a*Csc[e + f*x]), x], x] /; FreeQ[{a, b, e, f, m}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)]

Rule 4001

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> -Simp[(B*Cot[e + f*x]*(a + b*Csc[e + f*x])^m)/(f*(m + 1)), x] + Dist[(a*B*m + A*b*(m + 1))/(b*(
m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x], x] /; FreeQ[{a, b, A, B, e, f, m}, x] && NeQ[A*b - a*B,
0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b*(m + 1), 0] &&  !LtQ[m, -2^(-1)]

Rule 3828

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Dist[(a^In
tPart[m]*(a + b*Csc[e + f*x])^FracPart[m])/(1 + (b*Csc[e + f*x])/a)^FracPart[m], Int[(1 + (b*Csc[e + f*x])/a)^
m*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[m] &&  !GtQ
[a, 0]

Rule 3827

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Dist[(a^2*
d*Cot[e + f*x])/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[a - b*Csc[e + f*x]]), Subst[Int[((d*x)^(n - 1)*(a + b*x)^(m -
 1/2))/Sqrt[a - b*x], x], x, Csc[e + f*x]], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !In
tegerQ[m] && GtQ[a, 0]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 225

Int[1/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(x*(s
+ r*x^2)*Sqrt[(s^2 - r*s*x^2 + r^2*x^4)/(s + (1 + Sqrt[3])*r*x^2)^2]*EllipticF[ArcCos[(s + (1 - Sqrt[3])*r*x^2
)/(s + (1 + Sqrt[3])*r*x^2)], (2 + Sqrt[3])/4])/(2*3^(1/4)*s*Sqrt[a + b*x^6]*Sqrt[(r*x^2*(s + r*x^2))/(s + (1
+ Sqrt[3])*r*x^2)^2]), x]] /; FreeQ[{a, b}, x]

Rubi steps

\begin{align*} \int \sec ^3(c+d x) (a+a \sec (c+d x))^{5/3} \, dx &=\frac{3 (a+a \sec (c+d x))^{8/3} \tan (c+d x)}{11 a d}+\frac{3 \int \sec (c+d x) \left (\frac{8 a}{3}-a \sec (c+d x)\right ) (a+a \sec (c+d x))^{5/3} \, dx}{11 a}\\ &=-\frac{9 (a+a \sec (c+d x))^{5/3} \tan (c+d x)}{88 d}+\frac{3 (a+a \sec (c+d x))^{8/3} \tan (c+d x)}{11 a d}+\frac{49}{88} \int \sec (c+d x) (a+a \sec (c+d x))^{5/3} \, dx\\ &=-\frac{9 (a+a \sec (c+d x))^{5/3} \tan (c+d x)}{88 d}+\frac{3 (a+a \sec (c+d x))^{8/3} \tan (c+d x)}{11 a d}+\frac{\left (49 a (a+a \sec (c+d x))^{2/3}\right ) \int \sec (c+d x) (1+\sec (c+d x))^{5/3} \, dx}{88 (1+\sec (c+d x))^{2/3}}\\ &=-\frac{9 (a+a \sec (c+d x))^{5/3} \tan (c+d x)}{88 d}+\frac{3 (a+a \sec (c+d x))^{8/3} \tan (c+d x)}{11 a d}-\frac{\left (49 a (a+a \sec (c+d x))^{2/3} \tan (c+d x)\right ) \operatorname{Subst}\left (\int \frac{(1+x)^{7/6}}{\sqrt{1-x}} \, dx,x,\sec (c+d x)\right )}{88 d \sqrt{1-\sec (c+d x)} (1+\sec (c+d x))^{7/6}}\\ &=\frac{147 a (a+a \sec (c+d x))^{2/3} \tan (c+d x)}{440 d}-\frac{9 (a+a \sec (c+d x))^{5/3} \tan (c+d x)}{88 d}+\frac{3 (a+a \sec (c+d x))^{8/3} \tan (c+d x)}{11 a d}-\frac{\left (343 a (a+a \sec (c+d x))^{2/3} \tan (c+d x)\right ) \operatorname{Subst}\left (\int \frac{\sqrt [6]{1+x}}{\sqrt{1-x}} \, dx,x,\sec (c+d x)\right )}{440 d \sqrt{1-\sec (c+d x)} (1+\sec (c+d x))^{7/6}}\\ &=\frac{147 a (a+a \sec (c+d x))^{2/3} \tan (c+d x)}{440 d}+\frac{1029 a (a+a \sec (c+d x))^{2/3} \tan (c+d x)}{880 d (1+\sec (c+d x))}-\frac{9 (a+a \sec (c+d x))^{5/3} \tan (c+d x)}{88 d}+\frac{3 (a+a \sec (c+d x))^{8/3} \tan (c+d x)}{11 a d}-\frac{\left (343 a (a+a \sec (c+d x))^{2/3} \tan (c+d x)\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x} (1+x)^{5/6}} \, dx,x,\sec (c+d x)\right )}{880 d \sqrt{1-\sec (c+d x)} (1+\sec (c+d x))^{7/6}}\\ &=\frac{147 a (a+a \sec (c+d x))^{2/3} \tan (c+d x)}{440 d}+\frac{1029 a (a+a \sec (c+d x))^{2/3} \tan (c+d x)}{880 d (1+\sec (c+d x))}-\frac{9 (a+a \sec (c+d x))^{5/3} \tan (c+d x)}{88 d}+\frac{3 (a+a \sec (c+d x))^{8/3} \tan (c+d x)}{11 a d}-\frac{\left (1029 a (a+a \sec (c+d x))^{2/3} \tan (c+d x)\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{2-x^6}} \, dx,x,\sqrt [6]{1+\sec (c+d x)}\right )}{440 d \sqrt{1-\sec (c+d x)} (1+\sec (c+d x))^{7/6}}\\ &=\frac{147 a (a+a \sec (c+d x))^{2/3} \tan (c+d x)}{440 d}+\frac{1029 a (a+a \sec (c+d x))^{2/3} \tan (c+d x)}{880 d (1+\sec (c+d x))}-\frac{9 (a+a \sec (c+d x))^{5/3} \tan (c+d x)}{88 d}+\frac{3 (a+a \sec (c+d x))^{8/3} \tan (c+d x)}{11 a d}-\frac{343\ 3^{3/4} a F\left (\cos ^{-1}\left (\frac{\sqrt [3]{2}-\left (1-\sqrt{3}\right ) \sqrt [3]{1+\sec (c+d x)}}{\sqrt [3]{2}-\left (1+\sqrt{3}\right ) \sqrt [3]{1+\sec (c+d x)}}\right )|\frac{1}{4} \left (2+\sqrt{3}\right )\right ) (a+a \sec (c+d x))^{2/3} \left (\sqrt [3]{2}-\sqrt [3]{1+\sec (c+d x)}\right ) \sqrt{\frac{2^{2/3}+\sqrt [3]{2} \sqrt [3]{1+\sec (c+d x)}+(1+\sec (c+d x))^{2/3}}{\left (\sqrt [3]{2}-\left (1+\sqrt{3}\right ) \sqrt [3]{1+\sec (c+d x)}\right )^2}} \tan (c+d x)}{880 \sqrt [3]{2} d (1-\sec (c+d x)) (1+\sec (c+d x)) \sqrt{-\frac{\sqrt [3]{1+\sec (c+d x)} \left (\sqrt [3]{2}-\sqrt [3]{1+\sec (c+d x)}\right )}{\left (\sqrt [3]{2}-\left (1+\sqrt{3}\right ) \sqrt [3]{1+\sec (c+d x)}\right )^2}}}\\ \end{align*}

Mathematica [C]  time = 0.302341, size = 96, normalized size = 0.23 \[ \frac{a \tan (c+d x) (a (\sec (c+d x)+1))^{2/3} \left (196 \sqrt [6]{2} \text{Hypergeometric2F1}\left (-\frac{7}{6},\frac{1}{2},\frac{3}{2},\frac{1}{2} (1-\sec (c+d x))\right )+3 (8 \sec (c+d x)+5) (\sec (c+d x)+1)^{13/6}\right )}{88 d (\sec (c+d x)+1)^{7/6}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^3*(a + a*Sec[c + d*x])^(5/3),x]

[Out]

(a*(a*(1 + Sec[c + d*x]))^(2/3)*(196*2^(1/6)*Hypergeometric2F1[-7/6, 1/2, 3/2, (1 - Sec[c + d*x])/2] + 3*(1 +
Sec[c + d*x])^(13/6)*(5 + 8*Sec[c + d*x]))*Tan[c + d*x])/(88*d*(1 + Sec[c + d*x])^(7/6))

________________________________________________________________________________________

Maple [F]  time = 0.116, size = 0, normalized size = 0. \begin{align*} \int \left ( \sec \left ( dx+c \right ) \right ) ^{3} \left ( a+a\sec \left ( dx+c \right ) \right ) ^{{\frac{5}{3}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^3*(a+a*sec(d*x+c))^(5/3),x)

[Out]

int(sec(d*x+c)^3*(a+a*sec(d*x+c))^(5/3),x)

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3*(a+a*sec(d*x+c))^(5/3),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (a \sec \left (d x + c\right )^{4} + a \sec \left (d x + c\right )^{3}\right )}{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac{2}{3}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3*(a+a*sec(d*x+c))^(5/3),x, algorithm="fricas")

[Out]

integral((a*sec(d*x + c)^4 + a*sec(d*x + c)^3)*(a*sec(d*x + c) + a)^(2/3), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**3*(a+a*sec(d*x+c))**(5/3),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac{5}{3}} \sec \left (d x + c\right )^{3}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3*(a+a*sec(d*x+c))^(5/3),x, algorithm="giac")

[Out]

integrate((a*sec(d*x + c) + a)^(5/3)*sec(d*x + c)^3, x)